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Abstract

A Zener–Stroh crack may nucleate at the interface of metal/piezoelectric bi-materials, when piled-up dislocations

along a slip plane in metal material are stopped by the interface which works as an obstacle. As a kind of microcrack,

Zener–Stroh crack controls the initial phase of crack nucleation. In the first step of our current research, the stress and

electric displacement fields for a single interfacial dislocation in general piezoelectric/metal bimaterials are obtained in

an explicit close form. With this solution as the Green function, the interfacial Zener–Stroh crack problem is formulated

into a set of singular integral equations with distributed dislocation technique. These singular integral equations are

then solved by numerical method based on the singularity nature at the crack tips. To deal with the oscillation behaviors

near the interfacial crack tips, both open crack tip model and contact zone model are considered and compared each

other in the paper. Solutions on the stress field, stress and electric displacement intensity factors and contact zone length

are obtained. A numerical example of a Zener–Stroh crack at the Pt/PZT-5H bimaterial interface is given. Some useful

electro-elastic characteristics related to the crack are found and discussed.
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1. Introduction

1.1. Metal/piezoelectric structure

As a typical smart material, piezoelectric ceramics (generally, lead zirconate titanate or PZT in short) are

widely used in sensors, transducers and actuators, some of which are implemented through micro-electro-

mechanical-systems (MEMS). Often bonded to a piezoelectric layer, metal electrodes (generally Cu or Pt)

supply the voltage across the piezoelectric material and also act as a template to ensure the correct crys-

tallographic alignment of the piezoelectric film as the same time. Due to the material mismatch, thermal

stress as well as residual stress and even electric field may induce microcrack nucleation along the interface.
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For polycrystalline metal material, dislocations may pile up along a slip plane until they are stopped by an

obstacle such as an interface and thus coalesce into a microcrack due to Zener–Stroh crack initiation

mechanism (Zener, 1948; Stroh, 1954), as shown in Fig. 1. Such type of microcracks is very often observed

in metal matrix composite materials.

1.2. Nucleation of a Zener–Stroh crack

Zener–Stroh mechanism of microcrack nucleation was first proposed by Zener (1948) and later further

developed by Stroh (1954), therefore the crack is named after those two researchers as Zener–Stroh crack.

According to Stroh�s (1954) research result, a number of 103 dislocations are needed to form a crack in

hardened copper and a number of the order of 102 is required if a stack of piled-up dislocations on parallel
slip planes exist. Through energy consideration, Stroh (1955) argued that the energy needed to initiate a

Zener–Stroh crack is possibly lower than that due to other mechanism. From then on, a lot of crack models

proposed by subsequent researchers can be regarded as the variants of Zener–Stroh crack. Cottrell (1958)

suggested that dislocations piling up along two intersecting slip planes could coalesce into a microcrack.

Another model of crack nucleation can be called anti-Zener–Stroh mechanism proposed by Kikuchi et al.

(1981). In this model, concentrated stress field makes a slip nucleated near the end of a particle at a grain

boundary, dislocations of one sign move away from this region, a crack is then initiated as a pileup of the

left opposite sign dislocations.
Zener–Stroh crack and Griffith crack are a complementary pair which have opposite characteristics.

Physical parameters symmetric for the Griffith crack are anti-symmetric for Zener–Stroh crack, and vice

versa. For example, anti-symmetric dislocation distribution along the Griffith crack causes symmetric

traction stress, while dislocation distribution along a Zener–Stroh crack is symmetric and the stress field is

anti-symmetric as a result. Weertman (1986) compared Griffith crack and Zener–Stroh crack on the stress,

displacement, dislocation density and stress intensity factors. It is worth to mention that the total sum of

Burgers vectors of the dislocations bT in a Zener–Stroh crack is not equal to zero due to displacement

loading mechanism. This is different to a Griffith crack where the total sum of Burgers vectors of the
dislocations along the crack line is zero.

In recent years, Zener–Stroh crack problems were widely investigated in linear elastic fracture mechanics

(LEFM) context. An interfacial Zener–Stroh crack problem was solved by Cherepanov (1994) for isotropic

elastic material and by Fan (1994) for anisotropic elastic material. Based on their results, there is oscillation

behavior near the crack tip. Later on the contact zone model was employed to reformulate the problem

(Fan et al., 1998), and oscillation behavior was ceased successfully. It was found that the contact zone

length could be fairly large for shear-load dominant case. The stress investigation on interfacial Zener–

Stroh crack in multi-layered thin-film structures was carried out by Xiao and Zhao (submitted for publi-
cation). The interaction between a Zener–Stroh crack and a coated inclusion (Xiao and Chen, 2001) were

investigated around the same period. Zener–Stroh crack mechanism was also used to explain fatigue

fracture procedure in various materials, such as silicon carbide (Shih et al., 2000) and metal fatigue (Lawson

et al., 1997).
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Fig. 1. Zener–Stroh crack nucleation mechanism along metal/piezoelectric bi-material interface.
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1.3. Crack problems in piezoelectric materials

With the increasing application of piezoelectric materials, a lot of efforts have been made in solving

various mechanics problems in piezoelectric materials (Huang and Kuang, 2001; Pak, 1992; Park and Sun,
1995; Sosa, 1992; Qin and Mai, 1998; Suo et al., 1992). In general fractures always happen along the

interface since it is weaker than the interior of the material, interfacial crack problems in piezoelectric

material were solved repeatedly in recent years (Shen et al., 2000; Gao and Yu, 1998; Zhang and Tong,

1996; Qin and Yu, 1997). However, to the best knowledge of the authors so far, few publications can be

found on the electro-elastic characteristics of interfacial Zener–Stroh crack in piezoelectric layered struc-

tures or composite materials. In the current paper, stress investigation on an interfacial Zener–Stroh crack

along a metal/piezoelectric interface has been carried out. To deal with the oscillation behaviors in front of

the interfacial crack tips, both open crack tip model and contact zone model are considered. Solutions on
the stress field, stress and electric displacement intensity factors (SEDIFs) and contact zone length are

obtained. Some useful electro-elastic characteristics of the crack are found and discussed.
2. Formulation

The physical problem to be solved is illustrated in Fig. 2. Along the interface is a Zener–Stroh crack,

whose crack tip where the dislocation enters the crack is called the blunt tip, while the other one is called the

sharp tip. A Zener–Stroh crack always propagates from the sharp tip. The crack length is 2a. In the

Cartesian coordinate system, the y-axis perpendicularly crosses the centre of the crack with x-axis along

the interface. The electric field is added along the y-direction. To formulate the problem with distributed

dislocation technique, we first derive the stress and electric displacement (SED) field due to a single dis-
location at the interface of the two bonded general piezoelectric materials. With the single dislocation

solution as a Green function, the crack problem is then formulated with the aid of distributed dislocation

based fracture mechanics theory. Both open crack tip model and contact zone model for the crack for-

mulation are considered in our study.
2.1. Stroh’s formulism

Formulation models for anisotropic bimaterials were developed by Lekhnitskii (1963) and Stroh (1958)

independently, both create equal results. In the current problem, Stroh�s formulism is adopted. It begins

with the constitutive equations for general piezoelectric materials:
Fig. 2. A Zener–Stroh crack at the interface.
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rij ¼ cijkluk;l � eliju;l; ð1Þ

Di ¼ eikluk;l þ jilu;l; ð2Þ
where elij are the piezoelectric coefficients measured at a constant electric field; u and r are the mechanical

displacements and stresses, respectively; u and Di are the electric potential and displacements, respectively;
jil are the dielectric constants measured at a constant strain and temperature. For manipulation conve-

nience, the compact form of Eqs. (1) and (2) can be written as
PiJ ¼ EiJKlUK;l ð3Þ

with
PiJ ¼
rij; i; J ¼ 1; 2; 3;
Di; J ¼ 4; i ¼ 1; 2; 3;

�
ð4Þ

UK ¼ uk; K ¼ 1; 2; 3;
u; K ¼ 4;

�
ð5Þ

EiJKl ¼

cijkl; i; J ;K; l ¼ 1; 2; 3;
elij; K ¼ 4; i; J ; l ¼ 1; 2; 3;
eikl; J ¼ 4; i;K; l ¼ 1; 2; 3;
�jil; J ¼ K ¼ 4; i; l ¼ 1; 2; 3;

8>><
>>: ð6Þ
Eq. (5) is the generalized displacement function vector and can be written as
U ¼ u1; u2; u3;u½ �T; ð7Þ

and the stress and electric displacement (SED) components of P2 is in forms of
P2 ¼ P21;P22;P23;P24½ �T: ð8Þ

Without body forces and free charges, equilibrium can then be written as
PiJ ;i ¼ 0: ð9Þ

The general solution of (9) for generalized two-dimensional problem can be expressed as (Suo et al., 1992)
U ¼ AfðzÞ þ A�fðzÞ; ð10Þ

P2 ¼ Bf 0ðzÞ þ B�f
0 ðzÞ ð11Þ
with
z ¼ xþ py; ð12Þ

where A and B are 4· 4 complex matrices,
A ¼ ½a1; a2; a3; a4�; B ¼ ½b1; b2; b3; b4�; ð13Þ
and
fðzÞ ¼ ½f1ðz1Þ; f2ðz2Þ; f3ðz3Þ; f4ðz4Þ�T: ð14Þ

To determine p and a, substituting Eq. (10) into Eqs. (3) and (9), we can obtain the eigenvalues pj and
eigenvectors aj from the following equation:
½Qþ pjðRþ RTÞ þ p2jT�aj ¼ 0; ð15Þ
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which leads to
Q
��� þ pjðRþ RTÞ þ p2jT

��� ¼ 0; ð16Þ
where Q, R and T are 4· 4 real matrices:
ðQÞIK ¼ E1IK1; ðRÞIK ¼ E1IK2; ðTÞIK ¼ E2IK2: ð17Þ

The eigenvectors bj can be obtained from
bj ¼ ðRT þ pjTÞaj ¼ � 1

pj
ðQþ pjRÞaj: ð18Þ
Introduce a new matrix:
L ¼ iAB�1; ð19Þ

then the bi-material matrix H can be expressed as
H ¼ L1 þ L2; ð20Þ

here H is also 4 · 4 complex matrix,
H ¼ ½H1;H2;H3;H4�T: ð21Þ
2.2. Green’s function for a single dislocation at the interface of two bonded piezoelectric materials

A framework solution for a single dislocation at the interface of anisotropic bimaterials has been carried

out by Suo (1990). This solution method can be extended to the similar problem for piezoelectric bima-
terials. Assuming the dislocation is in material 2, the lower material, the solution can be written as
fðzÞ ¼ f1ðzÞ; z 2 1;
f2ðzÞ þ f0ðzÞ; z 2 2;

�
ð22Þ
where the superscript refer to the materials, and f0ðzÞ is the dislocation solution for an infinite homogeneous

medium given by
f0ðzÞ ¼ B�1ðLþ LÞ�1
b lnz; ð23Þ
in which b is the burgers vector of the dislocation defined as the jump across the interface,
b ¼ U1ðx; 0Þ �U2ðx; 0Þ: ð24Þ

By considering stress and displacement continuity across the interface, Eq. (22) can be solved as
f1ðzÞ ¼ B�1
1 H�1ðL2 þ L2ÞB2f0ðzÞ z 2 material 1;

f2ðzÞ ¼ B�1
2 H

�1ðL2 � L1ÞB2
�f0ðzÞ z 2 material 2:

(
ð25Þ
When the dislocation locates at the interface (illustrated in Fig. 3), Eq. (25) is simplified to
B1f1ðzÞ ¼ B2
�f2ðzÞ ¼

1

2p
H�1b lnz: ð26Þ
Therefore the SED is obtained from (11),
P2i ¼ 2Re
X4
j¼1

Bijf 0
j ðzjÞ

" #
: ð27Þ



Fig. 3. A single dislocation at the metal/piezoelectric interface.
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By substituting zj ¼ xþ pjy into Eq. (27), we have
P2iðx; yÞ ¼ Re
X4
j¼1

1

p
H�1

ij bj
1

xþ pjy

" #
; ð28Þ
where the traction along the interface is obtained from (28) by Suo (1990),
P2iðx; 0Þ ¼
1

2p
H�1

xþ 0i

 
þ H

�1

x� 0i

!
b; ð29Þ
in which xþ 0i means a point approaching the x-axis from the upper half-plane while x� 0i is for the point

from the lower half-plane. However when the solution (29) is employed as a Green function solution to
investigate corresponding crack problem with the aid of distributed dislocation method, the integrals of the

stress field of a single dislocation cannot be simply determined from Eq. (29), as stated by Suo (1990). To

calculate the traction on the interface, the following limit is introduced (Qu and Li, 1991):
lim
y!�0

1

xþ pjy

� �
¼ 1

x
� ipdðxÞ; Imfpjg > 0; ð30Þ
in which the delta function takes the form
Z þ1

�1
dðxÞdx ¼ 1; ð31Þ

dðxÞ ¼ 0; jxj > 0;
1; x ¼ 0:

�
ð32Þ
Generally, H is not a real matrix and is expressed as
H�1 ¼ Mþ iN ð33Þ
with M and N being both real matrices.

Using Eqs. (30)–(33), Eq. (29) can be expressed as
P2iðx; 0Þ ¼
X4
j¼1

1

p
Mijbj

1

x

�
þ NijbjdðxÞ

�
: ð34Þ
The difference of Eqs. (29) and (34) is the expression of the stress field at the dislocation core, which must be

evaluated when the solution is applied for formulating a crack. The stress field for piezoelectric materials we
obtained here is well consistent with that for general isotropic material (cf. Appendix A). With the dis-

tributed dislocation technique, this solution for a single dislocation can be immediately used to investigate
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interaction problems between dislocations and cracks, as well as to formulate various types of interfacial

crack problems.

2.3. The open model for the Zener–Stroh crack

As shown in Fig. 2, for an interfacial Zener–Stroh crack, the boundary conditions is expressed as
P1
2K ¼ P2

2K ¼ 0; �a < x < a; ð35Þ

P1
2K ¼ P2

2K ; jxj > a; ð36Þ

U1
K ¼ U2

K ; jxj > a: ð37Þ

With the above boundary conditions, the stress field due to a Zener–Stroh crack can be obtained by

integrating Eq. (34) along the crack line,
P2iðx; 0Þ ¼
Z þa

�a

X4
j¼1

1

p
MijDjðnÞ

1

x� n

�
þ NijDjðnÞdðxÞ

�
dn; �a < x < a; ð38Þ
where D is the dislocation density,
DðnÞ ¼ dbðnÞ
dn

: ð39Þ
Considering the characteristic of the delta function mentioned above, the equation is changed to
P2kðx; 0Þ ¼
Z þa

�a

X4
j¼1

1

p
MijDjðnÞ

1

x� n
dnþ

X4
j¼1

NijDjðxÞ; �a < x < a: ð40Þ
For the current study, we consider a purely displacement loaded Zener–Stroh crack. The net total dis-

locations inside the crack are not equal to zero but
Z þa

�a
DðnÞdn ¼ bT: ð41Þ
Combining Eqs. (40) and (41), the problem can be solved numerically with the numerical method given in

Section 3.

2.4. Contact zone model for the Zener–Stroh crack

In this section, the physical problem considered is the same as the one in Fig. 2. But for the current
formulation, in order to cease the oscillation phenomenon for the stress and displacement solution near the

crack tip, a contact zone behind the right crack tip is introduced based on Comninou (1977). The length of

the contact zone is a� b as shown in Fig. 4. This means inside the contact zone, the upper and lower crack

faces touch each other. As a result, the boundary conditions are changed to:
P1
22 ¼ P2

22 ¼ 0; �a < x < b; ð42Þ

P1
2K ¼ P2

2K ¼ 0; �a < x < a; K ¼ 1; 3; 4; ð43Þ

P1
2K ¼ P2

2K ; jxj > a; ð44Þ



Fig. 4. The contact zone model for the current interfacial Zener–Stroh crack.
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U1
K ¼ U2

K ; jxj > a: ð45Þ

Taking consideration of Eq. (42), the normal stress field of the Zener–Stroh crack along the interface

outside the contact zone, i.e., �a < x < b, is expressed as
P22ðx; 0Þ ¼
Z þb

�a

1

p
M22D2ðnÞ

1

x� n

�
þ N22D2ðnÞdðxÞ

�
dn

þ
Z þa

�a

X
j¼1;2;3

1

p
M2jDjðnÞ

1

x� n

�
þ N2jDjðnÞdðxÞ

�
dn; �a < x < b: ð46Þ
When �a < x < a, Eq. (43) for the shear stress becomes
P2iðx; 0Þ ¼
Z þb

�a

1

p
Mi2D2ðnÞ

1

x� n

�
þ Ni2D2ðnÞdðxÞ

�
dn

þ
Z þa

�a

X
j¼1;2;3

1

p
MijDjðnÞ

1

x� n

�
þ NijDjðnÞdðxÞ

�
dn; �a < x < a; for i ¼ 1; 3; 4: ð47Þ
By integrating the second parts in the square brackets of the above two equations, and considering the

characteristic of delta function, we obtain
P22ðx; 0Þ ¼
Z þb

�a

1

p
M22D2ðnÞ

1

x� n
dnþ Kð�ÞN22D2ðxÞ þ

Z þa

�a

1

p

X
j¼1;3;4

M2jDjðnÞ
1

x� n
dn

þ
X
j¼1;3;4

N2jD2ðxÞ; �a < x < b; ð48Þ

P2iðx; 0Þ ¼
Z þb

�a

1

p
Mi2D2ðnÞ

1

x� n
dnþ Kð�ÞNi2D2ðxÞ þ

Z þa

�a

1

p

X
j¼1;3;4

MijDjðnÞ
1

x� n
dn

þ
X
j¼1;3;4

NijD2ðxÞ; �a < x < a; for i ¼ 1; 3; 4; ð49Þ
where Kð�Þ is the Heaviside step function to ensure that D2 is included only in the shear equation for

�a < x < b,
Kð�Þ ¼ Kðxþ aÞ � Kðx� bÞ: ð50Þ
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Similar to the open model in Section 2.3, the net dislocations are not equal to zero, but
Z þb

�a
D2ðnÞdn ¼ bT2 ; ð51Þ

Z þa

�a
DjðnÞdn ¼ bTj ; j ¼ 1; 3; 4: ð52Þ
2.5. Nature of singularities at the crack tips

As mentioned above, one of the Zener–Stroh crack tips where dislocations enter the crack is called blunt

tip, and the other one is called the sharp tip. The crack tip singularities of a Zener–Stroh crack are different

for fully open crack tip model and contact zone model. The singularities of the crack tip are related to the

behavior of the dislocation density D which can be expressed as
DðxÞ ¼ d

dx
½UþðxÞ �U�ðxÞ�: ð53Þ
Comninou (1977) gave an analysis for an interfacial Griffith crack in isotropic bimaterials with contact zone

model. Following her analysis, Fan et al. (1998) presented that only the components of dislocation density

in x-direction is bounded at ðb; 0Þ while others are all singular at the crack tips for a Zener–Stroh crack with

the contact zone model. This analysis can also be applied to piezoelectric anisotropic bimaterials. For the

open crack tip model, all dislocation density D�s will be singular at both crack tips. While for the contact

zone model, D2 is bounded at ðb; 0Þ and the other D�s are all singular at both crack tips. For each case, the
dislocation density may be written as
DðsÞ ¼ xðsÞWðsÞ; ð54Þ

where WðsÞ is a bounded function and xðsÞ is the corresponding fundamental function for Cauchy kernels.

According to the above singularity analysis, xðsÞ can be chosen from Hills et al.�s (1996) book according to

different singularities.

For open crack tip model:
D

D2

Dj
ðsÞ ¼ NðsÞ
ð1� s2Þ1=2

; ð55Þ
For contact zone model:
ðsÞ ¼ ð1� sÞ1=2

ð1þ sÞ1=2
N2ðsÞ; ð56Þ

ðsÞ ¼ NjðsÞ
ð1� s2Þ1=2

; j ¼ 1; 3; 4; ð57Þ
where NðsÞ ð¼ ½N1ðsÞ;N2ðsÞ;N3ðsÞ;N4ðsÞ�Þ are unknown functions which are bounded and continuous in the

interval ð�a; aÞ.
As a Zener–Stroh crack always propagates from its sharp crack tip (right crack tip in the current

problem), only the SEDIFs of the right crack tip should be evaluated, which takes the form as
K ¼ ½KII;KI;KIII;KD�T ¼ Lim
x!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
P2ðx; 0Þ: ð58Þ
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3. Numerical procedure

The singular integral equations we have set up for the physical problem can be solved numerically by

using Erdogan and Gupta�s method (Erdogan and Gupta, 1972) and Krenk�s interpolation formulae
(Krenk, 1975). The crack length is normalised to a unit without influencing the analytical results, i.e.,
a ¼ 1; b6 1: ð59Þ
Because the singularities for the open model and the contact model are substantially different, their

numerical procedures are given respectively.
3.1. The open model

For the open model, Eqs. (40) and (41) are changed to
P2iðx; 0Þ ¼
Z þ1

�1

X4
j¼1

1

p
MijDjðnÞ

1

x� n
dnþ

X4
j¼1

NijDjðxÞ; �1 < x < 1; ð60Þ
Z þ1

�1

DðnÞdn ¼ bT: ð61Þ
The discretized forms of singular equations (60) and (61) are
P2iðxm; 0Þ ¼
XN
k¼1

1

N

X4
j¼1

Mij
NðnkÞ
xm � nk

(
þ
X4
j¼1

2

N
Nij

1

ð1� n2kÞ
1=2

HðxmÞNðnkÞ
)
; m ¼ 1; . . . ;N � 1; ð62Þ
p
N

XN
k¼1

NðnkÞ ¼ bT; ð63Þ
where
HðxmÞ ¼
1

2
þ
XN�1

l¼1

cos
2k � 1

2N
lp

� �
cosðlcÞ; c ¼ arccosðxmÞ; ð64Þ
nk ¼ cos p
2k � 1

2N

� �
; xm ¼ cos p

m
N

	 

; ð65Þ
There are totally 4N unknowns in the linear equation systems (62) and (63) which have 4N linear equations,

so the equation system can be solved uniquely. After we obtain the solutions of the unknowns, we can

substitute them into the following equations to obtain the SED field along the interface:
P2iðx; 0Þ ¼
XN
k¼1

1

N

X4
j¼1

Mij
NðnkÞ
x� nk

(
þ
X4
j¼1

2

N
1

1� n2k
NijHðxÞNðnkÞ

)
: ð66Þ
The SEDIFs can be obtained through the limit calculation and numerical treatment. This procedure can be

found in Hills et al.�s (1996) book. The stress intensity factors (SIFs) for general anisotropic bimaterials
were discussed by Huang and Kardomateas (2001) in a similar way. Based on this procedure, the current

results for the SEDIFs are given by
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Ki ¼
X4
j¼1

½Mij

(
þ Nij�

ffiffiffi
p

p 1

N

XN
i¼1

sin 2i�1
4N pð2N � 1Þ

� �
sin 2i�1

4N p
� � NðniÞ

)
: ð67Þ
3.2. The contact zone model

As we mentioned earlier, for this model, there is a contact zone behind the sharp crack tip. To normalize

all the integral ranges to ð�1; 1Þ, we introduce the following transformation:
t ¼ 2x
bþ 1

� b� 1

bþ 1
; when � 1 < x < b; ð68Þ

s ¼ 2n
bþ 1

� b� 1

bþ 1
; when � 1 < n < b; ð69Þ

n ¼ b� 1

2
þ bþ 1

2
s; �1 < s < 1; ð70Þ

x ¼ b� 1

2
þ bþ 1

2
t; �1 < t < 1; ð71Þ
and Eqs. (48), (49), (51) and (52) are changed to
P22ðx; 0Þ ¼
Z þ1

�1

1

p
M22D2ðsÞ

1

t � s
dsþ Kð�ÞN22D2ðtÞ þ

Z þ1

�1

1

p

X
j¼1;3;4

M2jDjðnÞ
1

x� n
dn

þ
X
j¼1;3;4

N2jDjðxÞ; �1 < t < 1; ð72Þ

P2iðx; 0Þ ¼
Z þ1

�1

1

p
Mi2D2ðsÞ

1

t � s
dsþ Kð�ÞNi2D2ðtÞ þ

Z þ1

�1

1

p

X
j¼1;3;4

MijDjðnÞ
1

x� n
dn

þ
X
j¼1;3;4

NijDjðxÞ; �1 < x < 1; for i ¼ 1; 3; 4; ð73Þ

bþ 1

2

Z þ1

�1

D2ðsÞds ¼ bT2 ; ð74Þ

Z þ1

�1

DiðnÞdn ¼ bTi ; i ¼ 1; 3; 4: ð75Þ
The discretized form of Eqs. (72)–(75) are:
P22ðxm; 0Þ ¼
XN
k¼1

M22
2ð1�skÞ
2Nþ1

N2ðskÞ
tm�sk

þKð�Þ 4
2Nþ1

N22X
2xm
1þb � b�1

bþ1

	 

N2ðskÞ

1� 2xm
1þb�

b�1
bþ1ð Þ½ �1=2

1þ 2xm
1þb�

b�1
bþ1ð Þ½ �1=2

þ
P

j¼1;3;4
1
N M2j

NjðnkÞ
xm�nk

h i
þ
P

j¼1;3;4
2
N N2jH 1þb

2
tm � 1�b

2


 �
NjðnkÞ 1� 1þb

2
tm � 1�b

2


 �2h i1=2

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
;

m ¼ 1; . . . ;N ; ð76Þ
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P2iðxm; 0Þ ¼
XN
k¼1

Mi2
2ð1�skÞ
2Nþ1

N2ðskÞ
tm�sk

þKð�Þ 4
2Nþ1

Ni2X
2xm
1þb � b�1

bþ1

	 

N2ðskÞ

1� 2xm
1þb�

b�1
bþ1ð Þ½ �1=2

1þ 2xm
1þb�

b�1
bþ1ð Þ½ �1=2

þ
P

j¼1;3;4
1
N Mij

NjðnkÞ
xm�nk

h i
þ
P

j¼1;3;4
2
N NijH 1þb

2
tm � 1�b

2


 �
NjðnkÞ 1� 1þb

2
tm � 1�b

2


 �2h i1=2

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
;

m ¼ 1; . . . ;N � 1; for i ¼ 1; 3; 4; ð77Þ

2p
2N þ 1

bþ 1

2

XN
k¼1

N2ðskÞ ¼ bT2 ; ð78Þ

p
N

XN
k¼1

NiðnkÞ ¼ bTi for i ¼ 1; 3; 4; ð79Þ
where
XðsÞ ¼
XN�1

l¼0

sin
kp

2N þ 1

� �
sin

kp
2N þ 1

ð2l
�

þ 1Þ
�
sin½2ðlþ 1Þc�

sin c
with c ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffi
1þ s
2

r !
; ð80Þ

HðsÞ ¼ 1

2
þ
XN�1

l¼1

cos
2k � 1

2N
lp

� �
cosðlcÞ with c ¼ arccosðsÞ; ð81Þ

sk ¼ cos p
2k

2N þ 1

� �
; tm ¼ cos p

2m� 1

2N þ 1

� �
; ð82Þ

nk ¼ cos p
2k � 1

2N

� �
; xm ¼ cos p

m
N

	 

; ð83Þ
Equation systems (76)–(79) contain 4N þ 1 equations with 4N þ 1 unknowns, and can be solved uniquely.

Different to equation systems (62) and (63), however, these equations are nonlinear with the parameter b.
Iteration calculating procedure should be taken. We first specify an estimated value of b and the 4N
equations become linear and the 4N unknowns can be obtained. Then the obtained 4N unknowns are
substituted into the objective equation to test if it is satisfied. New values of b are chosen using secant

method and the process is repeated until the precision of the objective equation reaches a certain degree.

After the equation systems are solved, the SEDIFs can be calculated with the following equations:
Ki ¼
X
j¼1;3;4

½Mij

(
þ Nij�

ffiffiffi
p

p 1

N

XN
i¼1

sin 2i�1
4N pð2N � 1Þ

� �
sin 2i�1

4N p
� � NjðniÞ

)
: ð84Þ
4. Numerical examples and related results

The two materials selected for calculation are lead zirconate titanate (PZT-5H) and platinum (Pt), whose
material properties are listed in Tables 1 and 2, respectively. For plane strain problem, we set bT3 ¼ 0 and

bT4 ¼ 0 and only bTx and bTy are considered. To emphasize the Zener–Stroh crack mechanism, we assume



Table 1

Material properties of PZT-5H ceramics (Pak, 1992)

c11 c12 c13 c22 c44 e16 e21 e34 j11 j22

126 GPa 53 GPa 55 GPa 117 GPa 35.3 GPa 17 C/m2 )6.5 C/m2 23.3 C/m2 151· 10�10

C/Vm

130· 10�10

C/Vm

The polarized direction is along the y-axis.

Table 2

Material properties of platinum (Pt)

Young�s modulus (GPa) Poisson�s ratio

145 0.38
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there is no far field stress loading, while the far field electric load is considered. Results obtained are
compared with those without electric field in order to reveal the electro-elastics characteristics of Zener–

Stroh crack in piezoelectric materials. It is worth to mention that if there are far field mechanical loads

applied, the stress fields due to these loads can be superposed directly to the current solution.

4.1. Contact zone length

For the contact zone model in absent of electric field, the variation of the contact zone length (1� b)
with the total burgers vectors is illustrated in Fig. 5. It is found that when the displacement loading ratio

bTy =b
T
x increases, the contact zone length 1� b decreases. This means that if bTx is very small, the contact

zone can be ignored. While when bTx increases, the contact zone length also increases. This result indicates

that the contact zone length is shear-loading dominated. Therefore the crack must be reformulated into the

open crack tip model when the shear displacement loading bTx is relatively small. The result is consistent to

that for Zener–Stroh crack and Griffth crack at the interface of dissimilar isotropic bimaterials (Fan et al.,

1998; Comninou and Schmueser, 1979). The variation of electric displacement D with the displacement load
bTy =b

T
x is plotted in Fig. 6. It is seen that the electric displacement has a linear relation with the displacement
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
0.00
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b
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T

Fig. 5. Contact zone length versus total Burgers vectors without electric field applied.



-1.0 -0.5 0.0 0.5 1.0
0.036

0.038

0.040

0.042

0.044

0.046

0.048

0.050

0.052

by
T/bx

T

Electrical displacement D 

Fig. 6. The relation between the electric displacement and bTy =b
T
x for a given contact zone length 1� b ¼ 1.
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loading when the contact zone length is specified, which indicates that these two types of loads work

together to determine the contact zone length.
4.2. Stress and electric displacement intensity factors

For plane strain problem, KIII ¼ 0, only the SIFs KI, KII and the EDIFs KD are considered. Figs. 7–9

show the SEDIFs obtained from both contact zone model and open crack tip model in the condition of no
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5x1012
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KII/by
T

bx
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T
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 open model

Fig. 7. Stress intensity factors KII versus total Burgers vectors when no electric field is applied.
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Fig. 8. Stress intensity factors KI versus total Burgers vectors when no electric field is applied.
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Fig. 9. Electric displacement intensity factors KD versus total Burgers vectors when no electric field is applied.
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electric field applied. From Fig. 7, it is found that the values due to both contact model and open crack tip
model have only a small difference for KII While in Fig. 8, the difference of KI between these two models

becomes much larger when the shearing displacement loading (bTx ) increases. As mentioned above, larger

shear loading will bring larger contact zone length. This means contact zone length has large influence on KI

but not on KII. The current results for both KI and KII are consistent with those for Griffith crack case. The

electric displacement intensity factors calculated from the two models is plotted in Fig. 9 where no electric

field is applied. It is observed that for the open crack tip model, the value of KD is proportional to the

displacement loading; While for the contact zone model, KD also increases with the displacement loading,
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Fig. 10. KII versus the electric displacement loading for a given contact zone length 1� b ¼ 1.
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Fig. 11. KI versus the electric displacement loading for a given contact zone length 1� b ¼ 1.
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but not linearly. This is due to the fact that with the introducing of the contact zone, the problem is no more

linear.

The influences of the electric displacement loading on SEDIFs are shown in Figs. 10–12. It is seen that

the SIFs and EDIFs are all linearly proportional to the electric displacement loading. It is noted that the

electric displacement loading can weaken or strengthen the SIFs and EDIFs, depending on the electric field

direction. Particularly the influence of the applied electric field on EDIFs is critical. In Fig. 12, it is observed

that the EDIFs can be reduced greatly (even to negative) by the electric loading.
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Fig. 12. KD versus the electric displacement loading for a given contact zone length 1� b ¼ 1.
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5. Conclusions

The physical problem of a Zener–Stroh crack at the interface of metal/piezoelectric bimaterial has been

investigated with both open crack tip model and contact zone model. Some concluding remarks can be

drawn:

(1) The SEDIFs based on the open crack tip model and contact zone model have fairly large differences,

when the shear displacement loading is dominant. This result indicates that the contact zone model
should be used if the shear loading applied is large.

(2) A pure displacement loading (the total burgers vectors inside a Zener-Stroch crack for the current case)

can also bring electric displacement intensity factors, since one of the materials is piezoelectric.

(3) The electric field applied can prevent or enhance the propagation and nucleation of a Zener–Stroh

crack by adjusting the applied direction. Particularly the influence of the electric loading on the electric

displacement intensity factors is much larger that that on the stress intensity factors.

Appendix A. The stress field due to an interfacial dislocation

Eq. (34) could be degenerated to the stress field for dissimilar isotropic bimaterials if we substitute the

bimaterial matrix H for isotropic material into it. H is in forms of (Suo et al., 1992)
H ¼

1�m
l i 1�2m

2l

	 

0 0

�i 1�2m
2l

	 

1�m
l 0 0

0 0 1
l 0

0 0 0 � 1
j

2
666664

3
777775; ðA:1Þ
where j ¼ 1 for conductors, and therefore Eq. (34) is changed to
ryyðx; 0Þ ¼ �bCbxdðxÞ þ Cby
1

x
; ðA:2Þ
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rxyðx; 0Þ ¼ Cbx
1

x
þ bCbydðxÞ; ðA:3Þ
in which C is the bi-material constant, for plane strain its value is
C ¼ 4l1l2ðl1 þ l2 � l1m2 � l2m1Þ
ðl1 þ 3l2 � 4l2m1Þðl2 þ 3l1 � 4l1m2Þ

: ðA:4Þ
Eqs. (A.2) and (A.3) has been employed to investigate interfacial Zener–Stroh crack in general isotropic

bimaterials (Fan et al., 1998), and the formulation can be obtained from the degeneration of Eqs. (48)–(52).
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